Reading Circuitry in the Child’s Developing Brain

Brian Wandell
Stanford University

Collaborators
Robert Dougherty, Michal Ben-Shachar, Gayle Deutsch, Arvel Hernandez
What Research Says About Reading

6 Reading Disability and the Brain
Sally E. Shaywitz and Bennett A. Shaywitz
Neurological research suggests that systematic phonics instruction can help many individuals overcome dyslexia.

12 The Science of Reading Research
G. Reid Lyon and Vineta Chisholm
The authors assert the primacy of peer-reviewed, quantitative research in judging "what works" in reading.

18 False Claims About Literacy Development
Stephen Krashen
The National Reading Panel has made research mistakes of its own.

22 Setting the Record Straight
Richard L. Allington
The research-supported reading intervention for at-risk students is tutoring—an expensive proposition, the author asserts.

26 Research on Reading: A Cautionary Tale
Gregory Camilli and Paula Weis
A closer look at the research reveals that tutoring and direct and differentiated instruction are as vital to reading success as systematic phonics.

30 Making Words Stick
Caroline J. Sahl and Rebecca Dohes
Instruction that encourages students to actively analyze word meanings is far more effective than simply talking about word meanings in the context of reading.

35 Phonics Instruction for Older Students? Just Say No
Gay Boy and Margaret L. Reis
Intensive phonemic training for older students creates instructional strain that could be used to help students make sense of real texts.

40 The Case for Informational Text
Neil K. Duke
Why nonfiction should take a more prominent place in the primary reading program.

46 Creating Fluent Readers
Timothy Rasinski
The author describes how to track and improve automatic reading.

52 How Do English Language Learners Learn to Read?
Roberts E. Slavin and Alan Cheung
Bilingual instruction emphasizing systematic phonics is the most effective approach.
Consensus: Phonology and reading

“... the specification of the role of phonological processing in the earliest stages of reading acquisition is one of the more notable scientific success stories of the last decade.” (Stanovich, 1991, p. 78)

“To my mind, the discovery and documentation of the importance of phonemic awareness ... is the single most powerful advance in the science and pedagogy of reading this century.” (Adams, 1990).
Phonemic awareness and reading

- Hearing, distinguishing and manipulating the sounds in words (also phonological awareness)
- Claimed to be the chief causal factor in early reading achievement
- Hope: If we train phonemic awareness, children will become better readers (also skills-training, decoding)

Example Tasks

• Deletion: Remove the /r/ from rat. What do you have left?
• Add a /b/ to rat. What do you have?
• Rhyming
• Oddity: bud, bun, bus, rug
• Pronouncing pseudowords (dif, giz, dop, blif)
Word reading correlates with phonological awareness
(Ben-Shachar, Deutsch, Dougherty, Wandell)

Reading (Word ID) read aloud: ‘..together,.. enough, ..’

Phonological Awareness (elision, blending)

elision (strain-/r/ = stain)
blending (/t/+oi/ = toy)

$r = 0.719$
$p < 0.0001$
Neural Basis of Reading

• Most variance explained by social factors and general cognitive ability

• Significant variance remains...
 – What are the specific neurological factors?

• Identify biological correlates
 – Explain individual differences
 – Predict & intervene before reading failure
Specific Reading Pathways

- Magnocellular hypothesis
- Temporo-parietal junction
- OTS - fMRI
- Diffusion Tensor Imaging

LR, 11yrs old
Lightness Perception
(Lotto and Purves)
The Astonishing Hypothesis
(Francis Crick; Braitenberg and Schutz, 1991)

Neurons are the computational elements
White matter connects the neurons via axons
The connection is called the synapse

- Neurons: 10^{11}
- Synapses: 10^{14}
- Synapses/neuron 10^3
- Surface area of each hemisphere: $25 \times 30 \text{ cm}^2$
- Most connections are local (10-100 um); some span many cm
- Neurons/mm3: 10^4-10^6
- Axon length/mm3: 3 km
Visual cortex is about 20% of human neocortex
FMRI Instrumentation

GE 3.0T MR scanner

Head Coil
Gray/white surface boundary
There Is An Increase In Oxygenated Blood Flow To Active Regions of Cortex
J.F. Fulton, M.D. (1928)

Operation
On turning down a left occipital bone flap, a large angry-looking angioma arteriale racemosum of the left occ. Lobe was disclosed which extensively involved the visual cortex. The haemorrhage of course, as the bone flap was so excessive that the operation had to be abandoned without touching the tumour. A decompression, however, was made. The patient was discharged ... with greatly improved vision.

- Subject noted that the noise in the back of his head increased in intensity when he was using his eyes.
- No increase for hearing, touch or smell.
- Increased more when he tried harder.

Source of noise
Using magnetic resonance imaging, we can measure responses in human visual cortex.
Localized cortical damage produces very specific visual dysfunction.
Face-blindness
Motion responses in childrens’ MT+
MT+ activation reduced in poor readers (Eden et al.)

Replicated by Demb et al., Ben-Shachar et al.
Response differences during phonological tasks

Temple, 2001, CONB

Locations where dyslexics had decreased activity relative to normal readers during phonological processing.
Neurology of word reading
(Cohen et al, 2003; Cerebral Cortex)

• Dejerine described a patient with a left occipito-temporal lesion who could see, but not process letters and words

• Callosal patients have a visual field loss of reading
Remediation results are plagued with several weak results

(Temple et al., PNAS, 2003; see also Shaywitz papers in PNAS and Biological Psychiatry)

Do ‘T’ and ‘D’ rhyme?
vs.
Are ‘P’ and ‘P’ the same?

Normal readers: rhyming vs. identity

Poor readers: rhyming vs. identity
Remediation results are plagued with several weak results (Temple et al., PNAS, 2003; see also Shaywitz papers in PNAS and Biological Psychiatry)

Poor readers increases after remediation

Do ‘T’ and ‘D’ rhyme? vs.
Are ‘P’ and ‘P’ the same?
Remediation results: FMRI signal size and language score

- Removing the outliers, the correlation coefficient becomes non-significant.
- Removing two random points, the correlation remains significant.

Figure 2. Temple et al. (2003) PNAS
Tracking the entire network of signals
A New Structural Imaging Method:
Diffusion Tensor Imaging
Human fiber tracts

Courtesy Professor Ugur Ture
Human fiber tracts
H₂O Diffusion Probes Microscopic Structures In the Brain

Unimpeded direction- large ADC
White matter fibres

Impeded direction- smaller ADC

Principal axis is usually aligned with a fibre bundle; Apparent Diffusion Coefficients (ADCs) are measured in at least 6 directions
H₂O diffusion probes membrane properties in the brain. In regions of high axial coherence, the cytoplasm within the axon limits diffusion and there is a large Apparent Diffusion Coefficient (ADC).
H$_2$O diffusion probes membrane properties in the brain.

In all other directions the bi-lipid cell membranes and myelin limit diffusion; perpendicular to the axon the ADC is smaller.

Radial diffusivity.
DTI Data Sets Are Volumes of Diffusion Surfaces

Conventional MR volumes are real-valued

DTI data are surfaces
DTI Reveals Differences In White Matter Structure

T1

DTI: Fractional Anisotropy
In adults, correlations exist between reading performance and FA (Klingberg et al., 2000).

For the gray scale, lighter colors represent higher anisotropy. Green indicates voxels significant in both the between-group analysis and the Word ID correlation analysis; yellow indicates voxels significant only in the between-group analysis; and blue indicates voxels significant only in the correlation analysis.
FA correlates with reading skill in children, too

Deutsch, Dougherty, Bammer, Siok, Gabrieli, Wandell (2005)

This correlation is present in children and adults.

\[r = 0.78 \quad (p = 0.01) \]

Children, 8-12

\[r = 0.62 \quad (p = 0.017) \]

Adult

\[r = 0.78 \quad (p = 0.01) \]
FA does not discriminate between ellipsoid orientations: What more can we learn from the principal diffusion direction?

\[FA = 0.6 \]

Principal diffusion directions differ
Using direction we see much more
Account for Directional Data Requires New Statistical Methods
There is a directional difference in anterior cortex (N=14)
(Schwartzmann, Dougherty, Taylor, 2005, MRM)

Good Readers

Poor Readers

FA difference cm
Can we understand these data by analyzing fiber tracts (DTI-FT)?

Many interesting algorithm issues
- Algorithm thresholds (direction, FA)
- Confidence intervals, probabilistic reasoning
- Spatial sampling
 - Samples are sparse, but directions are fine
 - Interpolation to intermediate positions
- Spatial co-registration between modalities (T1, fMRI) and subjects
- Validation needed
Fiber tract estimates
(Dougherty et al., PNAS, 2005)
Principal reading fiber tracts
Principal reading fiber tracts
Principal reading fiber tracts and FA differences
Radial diffusivity in temporal callosal projection zones correlates with phonological awareness (Dougherty et al., in review)

\[r = 0.52 \quad (27\%) \]

\[p<0.0002 \]
What I told you

- We are making progress on identifying key locations in the reading pathway using both functional and structural measures.
- We do not have a decisive set of findings about how training influences the development and responses in these locations.
What we would like to know

• Which parts of the reading pathway are enhanced by reading instruction?
 – Does specific training (e.g., phonemic awareness) influence a specific circuit? Is one training technique more or less efficient than the other? Do they combine well?
 – What physiological change result from this training? Synaptic coupling? Sprouting? Myelination and membrane changes?

• How can we improve fMRI and DTI techniques to link neuroimaging data precisely to neural changes
 – Synaptic release and sub-threshold signals, spiking activity, feed forward and backward signals mechanisms (fMRI)
 – Diffusion through myelin, cell membranes, cytoplasm (DTI)
Collaborators

Robert Dougherty Michal Ben-Shachar

Gayle Deutsch Arvel Hernandez Anthony Sherbondy